Link concordance implies link homotopy.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Link Concordance, Boundary Link Concordance and Eta-invariants

We study the eta-invariants of links and show that in many cases they form link concordance invariants, in particular that many eta-invariants vanish for slice links. This result contains and generalizes previous invariants by Smolinsky and Cha–Ko. We give a formula for the eta-invariant for boundary links. In several intersting cases this allows us to show that a given link is not slice. We sh...

متن کامل

Vassiliev Homotopy String Link Invariants

We investigate Vassiliev homotopy invariants of string links, and find that in this particular case, most of the questions left unanswered in [3] can be answered affirmatively. In particular, Vassiliev invariants classify string links up to homotopy, and all Vassiliev homotopy string link invariants come from marked surfaces as in [3], using the same construction that in the case of knots gives...

متن کامل

Homotopy, ∆-equivalence and Concordance for Knots in the Complement of a Trivial Link

Link-homotopy and self ∆-equivalence are equivalence relations on links. It was shown by J. Milnor (resp. the last author) that Milnor invariants determine whether or not a link is link-homotopic (resp. self ∆-equivalent) to a trivial link. We study link-homotopy and self ∆-equivalence on a certain component of a link with fixing the rest components, in other words, homotopy and ∆-equivalence o...

متن کامل

Twisted Torsion Invariants and Link Concordance

The twisted torsion of a 3-manifold is well-known to be zero whenever the corresponding twisted Alexander module is non-torsion. Under mild extra assumptions we introduce a new twisted torsion invariant which is always non-zero. We show how this torsion invariant relates to the twisted intersection form of a bounding 4-manifold, generalizing a theorem of Milnor to the non-acyclic case. Using th...

متن کامل

Alexander Duality, Gropes and Link Homotopy

We prove a geometric refinement of Alexander duality for certain 2–complexes, the so-called gropes, embedded into 4–space. This refinement can be roughly formulated as saying that 4–dimensional Alexander duality preserves the disjoint Dwyer filtration. In addition, we give new proofs and extended versions of two lemmas of Freedman and Lin which are of central importance in the A-B–slice problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1979

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-11839